



CHAROENCHAI
TRANSFORMER

SMART AUTOMATIC VOLTAGE REGULATING TRANSFORMER WITH MR ECOTAP® VPD®

ECOTAP® VPD®

บทนำ / Introduction

ในระบบจำหน่ายพลังงานไฟฟ้าในปัจจุบัน มีการเปลี่ยนแปลงที่รวดเร็ว มีการนำอุปกรณ์ไฟฟ้าใหม่ๆ เข้ามาใช้งานในระบบไฟฟ้ามากขึ้น ทั้งในส่วนของการผลิตไฟฟ้า การจำหน่ายไฟฟ้า และส่วนของการอุตสาหกรรม ทำให้เกิดปัญหาการเปลี่ยนแปลงของระบบแรงดันไฟฟ้ามากขึ้น 面貌เปลี่ยนไฟฟ้าที่ไม่เป็นระบบปรับแรงดันอัตโนมัติไม่สามารถตอบสนองการเปลี่ยนแรงดันไฟฟ้าได้ เมื่อไม่สามารถควบคุมระดับแรงดันให้มีความสม่ำเสมอได้ ทำให้อุปกรณ์ไฟฟ้าติดตั้งอยู่ทำงานอย่างไม่มีเสถียรภาพ เกิดการสูญเสียมากขึ้น โดยเฉพาะในระบบผลิตไฟฟ้าจะไม่สามารถผลิตไฟฟ้าเพื่อจำหน่ายได้เต็มพิกัดก่อภัยแบบใดโดยเฉพาะการผลิตด้วยพลังงานแสงแดด และพลังงานลม

Smart Automatic Voltage Regulating Transformer เป็นหนึ่งในผลิตภัณฑ์ใหม่ ที่ปรับเปลี่ยนชัยชนะไฟฟ้า จำกัด ได้ออกแบบให้มีการติดตั้งอุปกรณ์ Ecotap จากผู้ผลิต MR, Germany ซึ่งเป็น on-load tap-changer ชนิด vacuum interrupter พร้อม VPD controller ที่สามารถปรับค่าแรงดันให้อยู่ในช่วงที่ต้องการได้อย่างอัตโนมัติ ราคาประหยัดเมื่อเทียบกับ on-load tap-changer แบบเดิม มีขนาดเล็ก และมีอายุการใช้งานของ tap ยาวนานถึง 500,000 ครั้ง โดยไม่จำเป็นต้องมีการบำรุงรักษา tap เพิ่มเติม สามารถออกแบบความละเอียดของระดับแรงดันได้ถึง 17 ระดับ ทำให้มั่นใจได้ว่าสามารถควบคุมระดับแรงดันให้อยู่ในช่วงได้อย่างมีเสถียรภาพ

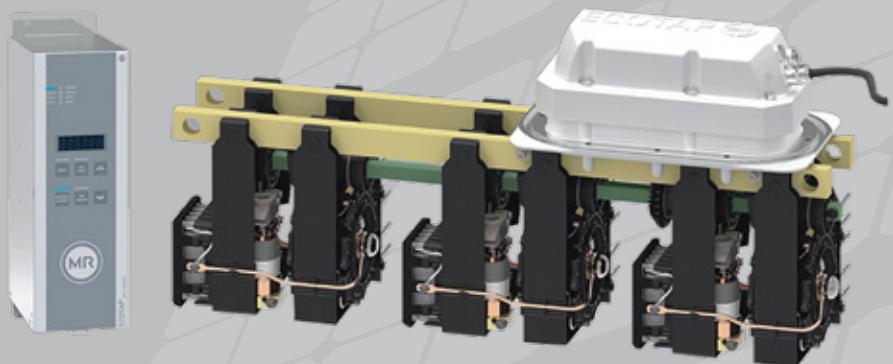
The present electricity distribution system is a fast changing technology. Many new electronic devices have been introduced into electrical system in electricity generation, electricity distribution, and industrial sector. Consequently, there is an increasing problem of the change in the voltage level. For instance, transformers without automatic voltage adjustment system fail to respond to the changing of voltage. Failing to maintain the consistent voltage level will result in the unstable performance of the installed electrical equipment, leading to more losses, especially for electricity generation system which will not be able to fully generate electricity as designed for (particularly for solar and wind energy).

Smart Automatic Voltage Regulating Transformer is a new type of transformer, developed by Charoenchai Transformer Co., Ltd., which is installed with Ecotap equipment from MR, Germany. The Ecotap equipment is an on-load tap-changer with vacuum interrupter and a VPD controller that can automatically adjust the voltage to the desired range. The price of this transformer is economical comparing to the traditional on-load tap-changer. Moreover, its size is small and its tap's lifetime is up to 500,000 times without any additional tap maintenance. The transformer can also design the level of voltage up to 17 levels to ensure the ability to stably control the voltage to be in range.

ECOTAP® VPD®

สำหรับ ECOTAP® VPD® ที่ทาง MR ได้ออกแบบไว้เป็น 2 รุ่น โดยมีคุณสมบัติ ดังนี้

There are two model of ECOTAP® VPD®, designed by MR, having the following qualifications :


On-load tap-changer	ECOTAP® VPD® III 30	ECOTAP® VPD® III 100
Number of phases	3	
Application	At any point in the winding	
Permitted transformer types	Free-breathing with oil conservator Totally oil-filled hermetic transformers (without gas cushion) Free breathing with air cushion only in combination with a special variant of the ECOTAP® VPD® (on request)	
Max. rated through-current	30 A	100 A
Max. rated step voltage	825 V	
Max. number of operating positions	9 operating positions without change-over selector 17 operating positions with change-over selector	
Highest voltage for equipment	36 kV, 40.5 kV	
Rated frequency	50/60 Hz	
Max. number of tap-change operations	500,000	
Permissible absolute pressure during operation	0.7...1.4 bar	

Motor-drive unit	
Runtime per tap-change operation	approx. 300 ms
Shortest gap between tap-change operations	3 s
Permissible ambient temperature during operation	-25°C ... +70°C
Protection class	IP54
Installation site	Indoors, outdoors

Control unit	
Permitted voltage range	100...240 VAC, 50/60 Hz
<i>Note : Measured voltage is supply voltage</i>	
Power consumption	Max. 345 VA
Internal fuse (F1)	Micro-fuse, 6.3x32 mm, min. 250 V, T4A
Permissible ambient temperature during operation	Continuous operation : -25°C ... +50°C Briefly (maximum of 2 h per day) : -25°C ... +70°C
Protection class	IP30
Installation site	Indoors, also suited to outdoor use in separate housing

ECOTAP® VPD® FOR DISTRIBUTION TRANSFORMERS

Wide Range of Applications

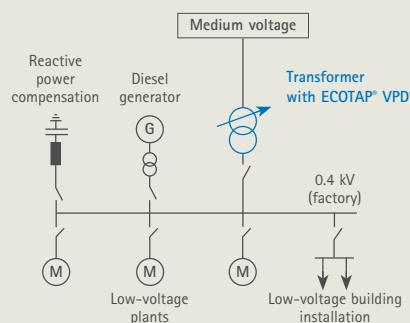
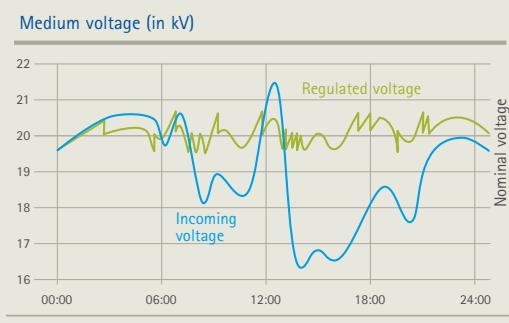
INDUSTRIAL APPLICATIONS

PUBLIC DISTRIBUTION GRIDS AND SMART CITY

DISPERSED GENERATION UNITS/ RENEWABLE ENERGY (RE)

การนำ Smart AVR Transformer ไปใช้งาน / Using of Smart AVR Transformer

1. การใช้งานสำหรับ Industrial Applications For Industrial Applications

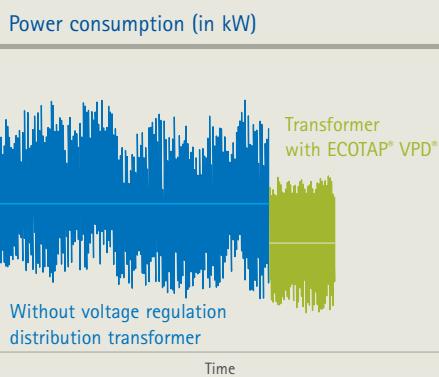


สำหรับภาคอุตสาหกรรม การควบคุมแรงดันนั้น ส่วนใหญ่จะเน้นใช้งานใน 2 ลักษณะ ได้แก่

For industrial sector, to control the voltage, it mainly focuses on two aspects, as follows

1.1 การแก้ปัญหาแรงดันไฟฟ้าตก หรือ แรงดันไฟฟ้าเกิน (Voltage Stabilizing)

สำหรับการแก้ปัญหาดังกล่าว ส่วนใหญ่เกิดจากอุปกรณ์หรือเครื่องจักรในโรงงาน ที่มีลักษณะการทำงานแล้วก้าให้เกิดกระแสสูงช่วงขณะหรือเกิดจากการกระชากของกระแส เช่น เตาหลอมโลหะด้วยไฟฟ้า เครื่องซื้อมน้ำดิบใหญ่ เป็นต้น ทำให้เกิดปัญหาแรงดันไฟฟ้าตก ซึ่งจะส่งผลให้อุปกรณ์ไฟอื่น ๆ ได้รับผลกระทบ เช่น เกิดการ trip เนื่องจากแรงดันต่ำเกินไป นอตอร์หมุนกระตุกเมื่อออกจากแรงบิดไม่พียงพอ เป็นต้น

The cause of voltage drop problem is mostly from the equipment or machines in a factory which cause momentarily high current or a surge of current, such as electric furnace or large welding machine, etc., leading to the drop of voltage. The examples of the effect of this drop are tripping of circuit due to too low voltage, or motor rotation problem due to insufficient torque, etc.

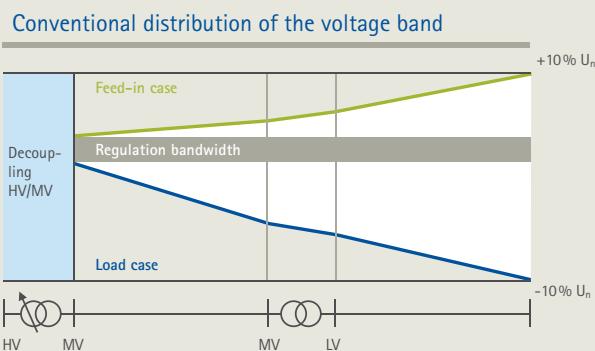

การใช้หน้าแปลง AVR Transformer จะสามารถช่วยปรับแรงดันของระบบให้อยู่ในช่วงที่ตั้งค่าไว้ ไม่ให้เกิดปัญหาแรงดันตกได้

Using AVR Transformer will prevent the drop voltage problem by adjusting the voltage of the system to be in the specified range.

1.2 การลดแรงดันไฟฟ้าเพื่อประหยัดพลังงาน ลดค่าไฟฟ้า (Reducing of voltage to save energy and decrease electricity cost)

สำหรับกิจการบางประเภท เช่น ห้างสรรพสินค้า ห้องเช่าพื้นที่ขนาดใหญ่ โรงงานทำน้ำแข็ง หรือໂ Holden จำพวกแสงสว่าง ซึ่งการลดแรงดันให้ต่ำกว่าค่า nominal system voltage ประมาณ 10-15% ทำให้ค่าพลังงานที่ใช้ลดลง ส่งผลทำให้ค่าไฟฟ้ารวมลดลง 10-15% ด้วย

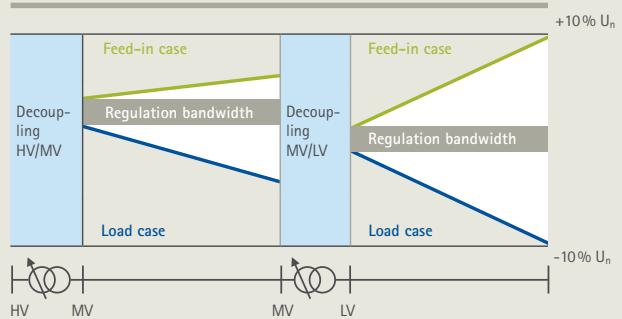
For some businesses, such as department store, large freezer room, ice factory or luminous load, reducing the voltage to be lower than the nominal system voltage around 10-15% will decrease the electricity cost around 10-15%.



2. การใช้งานสำหรับ Public Distribution Grids and Smart City

For Public Distribution Grids and Smart City

สำหรับ Distribution grid ของการไฟฟ้าต่างๆ เรื่องปัญหาแรงดันไฟฟ้าต่ำ หรือแรงดันไฟฟ้าเกิน นับเป็นปัญหาใหญ่ในการจ่ายไฟฟ้า โดยเฉพาะการตกของแรงดันที่ปลายสายป้อน หรือการเกิดแรงดันเกินที่ต้นสายป้อน การแก้ปัญหาเบื้องต้นส่วนใหญ่จะใช้ off-load tap-changer เป็นตัวปรับแรงดัน ซึ่งยังไม่สามารถแก้ปัญหาแรงดันไฟฟ้าต่ำหรือแรงดันไฟฟ้าเกินได้ 100% เนื่องจากไม่สามารถปรับตามแรงดันของระบบที่มีการเปลี่ยนแปลงได้ตลอดเวลา ข้อด้อยกับกำลังการผลิตและจำนวนโหลดที่ใช้งาน โดยสามารถแสดงได้ตามรูป


For the Electricity Authorities' Distribution grid, voltage drop and overvoltage are major problems in the supplying of electricity, especially the fall of voltage at the end of feeder or overvoltage at the start of feeder. Most of the basic solution, it will use off-load tap changer as a voltage regulator, which is unable to completely solve the voltage drop and overvoltage problems since the voltage cannot be adjusted to match the voltage of the system that is constantly changing depending on the production capacity and the number of loads used. This can be shown in the diagram below.

ทั้งนี้หากเปลี่ยนหน้าแปลงที่ใช้งานแบบ off-load tap-changer เป็นชนิด AVR Transformer ก็จะสามารถแก้ไขหรือควบคุมการเกิดปัญหาแรงดันตกหรือแรงดันเกินให้อยู่ในวงจำกัดได้

In this regard, by changing the off-load tap-changer transformer to AVR transformer, it will be able to solve or limit the voltage and overvoltage problems.

Distribution of the voltage band

3

การใช้งานสำหรับ Dispersed Generation Units หรือ Renewable Energy (RE) For Dispersed Generation Units or Renewable Energy (RE)

โดยทั่วไปแล้วการไฟฟ้าจะควบคุมค่าแรงดันไฟฟ้าของหม้อแปลงจำหน่ายไว้ที่ $\pm 10\%$ ของค่า nominal system voltage ตามมาตรฐาน EN 50160 ยกตัวอย่างเช่น $230 \pm 10\% \text{ V}$ ($207 \text{ V} - 253 \text{ V}$) แต่เนื่องจาก renewable energy (RE) ที่มีการผลิตเพิ่มส่วนใหญ่ในระบบไฟฟ้าโดยส่วนใหญ่แล้วจะทำให้แรงดันไฟฟ้าของหม้อแปลงจำหน่ายที่มี RE ต่ออยู่สูงขึ้นประมาณ $5-10\%$ ขึ้นอยู่กับขนาดของกำลังการผลิตจาก RE ซึ่งหากขนาดนั้นแรงดันของการไฟฟ้าอยู่ในระดับที่อยู่ในช่วงที่มีแรงดันสูง เช่น 250 V หากมี RE มาจ่ายพลังงานเข้าระบบ อีกจะทำให้เกิดแรงดันไฟฟ้าสูงเกินช่วงการใช้งานเกิดขึ้น ทำให้เกิดอันตรายต่ออุปกรณ์ไฟฟ้าที่ต่ออยู่ได้

Normally, the Electricity Authority will control the voltage of distribution transformer at $\pm 10\%$ of nominal system voltage in accordance with EN 50160 standards, e.g., $230 \pm 10\% \text{ V}$ ($207 \text{ V} - 253 \text{ V}$). However, most of the renewable energy (RE) that is produced for sale in electrical system would cause the voltage of the distribution transformers with RE to rise by about $5-10\%$ depending on the size of the production capacity from RE. When the voltage of the Electricity Authority is at a high voltage range, such as 250 V , if the RE supplies power to the system at that time, it will cause the voltage to exceed the operating range, causing harm to connected electrical equipment.

จากสมการการส่งค่าพลังงาน
From equation of energy supply:

$$\begin{aligned} P &= VI \cos \Theta \\ & \quad \& \\ Q &= VI \sin \Theta \end{aligned}$$

หมายเหตุ / Remark

P = Active Power (kW)
 Q = Reactive Power (kVAR)
 V = Voltage (V)
 I = Current (A)
 Θ = บุณฑุณวinkel V และ I Angle between V and I

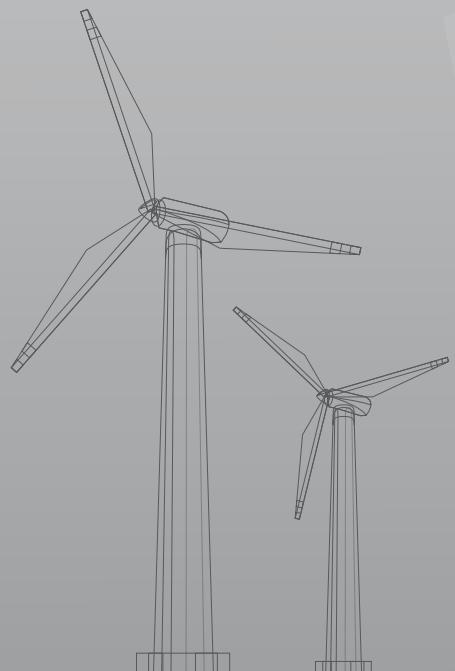
จากสมการข้างต้น โดยทั่วไปแล้วการป้องกันปัญหาแรงดันเกินดังกล่าว Inverter ที่อยู่ในชุด RE จะใช้หลักการแปลงค่าพลังงาน Active Power (kW) เป็น Reactive Power (kVAR) โดยการปรับมุม Θ ส่งผลให้ RE ผลิตพลังงานได้ แต่ไม่สามารถขายพลังงานได้เต็มที่ตามที่ได้ออกแบบไว้ ทำให้ประสิทธิภาพโดยรวมลดลงมาก ยกตัวอย่างเช่น Inverter ขนาด 100 kW หากจ่ายแรงดันที่ 230 V สามารถจ่ายได้ที่ 100 kW เท่านั้น แต่ถ้าหากแรงดันของระบบที่จ่ายอยู่เป็น 245 V จะจ่ายพลังงานได้เพียง 50 kW โดยต้องเปลี่ยนพลังงานที่เหลือเป็น Reactive Power 50 kVAR แทน แต่ถ้าหากเปลี่ยนหม้อแปลงดังกล่าวมาเป็นหม้อแปลง AVR Transformer จะสามารถจำหน่ายพลังงานไฟฟ้าระบบได้สูงสุดตามที่ระบบจะผลิตได้ ทำให้มีรายได้มากขึ้น สามารถคืนทุนเร็วได้มากกว่าปกติมาก

An example of the reactive power provision in relation to the line voltage

From the above equation, generally, to prevent the said overvoltage problem, the inverter inside the RE will convert the Active Power (kW) to Reactive Power (kVAR) by adjusting Θ angle, causing RE to be able to produce electricity but unable to fully sell the electricity as designed for, resulting in the significant decrease of the overall performance. For instance, if a 100 kW inverter supplies voltage at 230 V , it will be able to fully supply electricity at 100 kW . Nevertheless, if the voltage level is 245 V , the electricity supply might be only 50 kW and the remaining energy will be 50 kVAR reactive power instead. However, if we change the said transformer to AVR Transformer, it will be able to distribute electricity into the system to the maximum extent as the system can generate, generating more revenue and reaching break even point much faster than usual.

	MV	LV	Inverter Supply	Efficiency
Without AVR	22.00 kV	230 V	100 kW, 0 kVAR	100%
	23.43 kV	245 V	50 kW, 50 kVAR	50%
With AVR	22.00 kV	230 V	100 kW	100%
	23.43 kV	230 V	100 kW	100%

idT Transformer


Smart AVR Transformer ของทาง บ.เจริญชัยหน้อแปลงไฟฟ้า จำกัด สามารถติดตั้ง ชุด online monitoring เพิ่มเติมเพื่อรองรับการเป็น idT Transformer ได้ โดยหน้อแปลงดังกล่าวสามารถรายงานผลสถานะต่าง ๆ ของหน้อแปลง เช่น ค่าแรงดันไฟฟ้า ค่ากระแสไฟฟ้า ค่ากำลังไฟฟ้า ค่า Harmonics ค่าอุณหภูมิของหน้อแปลง รวมทั้งค่าอื่น ๆ ตามที่ทางลูกค้า ต้องการให้มีการวัดเพิ่มเติม

โดยการรายงานค่าสามารถได้แบบ real time ด้วยระบบสื่อสารที่ ผู้ใช้งานสามารถเลือกได้หลายวิธีได้แก่ 4G, Fiber optic, Wifi etc. สามารถ ดูข้อมูลผ่าน application บน mobile phone หรือ computer ได้อย่าง สะดวก และสามารถดูได้ทุกที่ในโลก

Charoenchai Transformer Co., Ltd.'s Smart AVR transformer can install additional online monitoring set to support the idT Transformer. The idT Transformer can report various status of a transformer, such as voltage, current, electric power, harmonics value, transformer temperature, as well as any other values that customers wish to measure.

The transformer status report can be viewed on a real-time basis through various communication means, such as 4G, fiber optic, Wifi, and etc. In addition, customers can also conveniently look at the report via an application in a mobile phone or computer from any places around the world.

Manufactured By

บริษัท เจริญชัยหม้อแปลงไฟฟ้า จำกัด
CHAROENCHAI TRANSFORMER CO., LTD.

9 Soi Prachautis 21, Prachautis Rd.,
Rajburana, Rajburana, Bangkok 10140, Thailand
Tel : (66 2)427-5552 (Auto 20 lines)
Fax : (66 2)427-3296, (66 2)870-9114

Distributed By (Sales & Services)

บริษัท เจริญชัยอินเตอร์เทรด จำกัด
CHAROENCHAI INTERTRADE CO., LTD.

838 Moo 10 Nai Khlong Bang Pla Kot,
Phra Samut Chedi, Samut Prakan 10290, Thailand
Tel. 02-409-6655 (Auto 20 Lines)
Fax. 02-409-6613